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How do we use group theory in practical applications?

We know now how to detect symmetry
in a molecular structure, to determine its 
point symmetry group, and to find all
the structure of this group (multiplication
table, subgroups, conjugacy classes , …)

But how do we use this knowledge in
practical applications?

C3v = {E, C3, C32, 𝛔1, 𝛔2, 𝛔3] 



Group actions
If G is a group with identity element e, and X is a set, then a (left) group 
action α of G on X is a function

                                  α: G × X ➝ X
that satisfies:

      α(e,x) = x                           Identity
                α(g, α(h,x)) = α(gh , x)     Compatibility with the operation in G

We use the notation α(g,x) = gx when the action is clear from the context

X = {O1, H2, H3}
O1

H2 H3
G = {E, C2, 𝜎1, 𝜎2}

C2O1 = O1

C2H2 = H3

C2H3 = H2

O1

H3 H2

C2



Permutation representation
By considering the effect of the action on the set X we can “represent”
the molecular symmetry group by a group of permutations  

X = {O1, H2, H3}
G = {E, C2, 𝜎1, 𝜎2}

O1

H2 H3

e = (1 2 3
1 2 3)

p = (1 2 3
1 3 2)

   E
             𝜎1

C2

       𝜎2

A permutation representation
is a homomorphism between
a group of symmetry 
operations and a group of
permutations

C2v S2 ⊂ S3



 Modern definition of symmetry 

Given a spatial configuration 𝔉, those
automorphisms of space which leave 𝔉
unchanged form a group Γ, and this 
group describes exactly the symmetry 
possessed by 𝔉.

Hermann Weyl, 1885 - 1955



Linear representations

The action of a symmetry group on an object can be represented by 
the group of automorphisms of ℝ3 leaving the object unchanged. 
The endomorphism:
                                            𝛤 : G → GL(ℝ3)

where GL(ℝ3) is the general linear group (the group of all linear 
automorphisms of ℝ3) is called a linear representation of G in ℝ3

An automorphism in Euclidean space is a function T: ℝ3 → ℝ3

a

bc a’b’

c’



Why are linear representations useful?
Representation theory allows us to study the action of an abstract 
group by analyzing the properties of a set of matrices under matrix 
multiplication

Its relevance in chemistry stems from the fact that in quantum 
mechanics states are represented by elements of a special vector space 
(Hilbert space) and  observables by linear operators on that space 



Vector spaces
A vector space over a field F is a set V, with two operations + and ·
(vector addition and multiplication with a scalar) such that:

1. V is a commutative group under +
2. For any k ∈ F and v ∈ V the product kv ∈ V with:

• k ( u + v ) = ku + kb
• ( k + l ) v = kv + lv
• k (lv) = (kl) v
• 1v = v

The elements of V are called vectors and those of the field F scalars. 
We write 0 for the neutral element of V under addition.



Examples of vector spaces



Linear combinations of vectors
Let S = {v1, v2, …, vn} be a set of vectors in V. A combination of the type 
w = k1v1+k2v2+…+knvn is called a linear combination. 

S is linearly independent iff

          k1v1+k2v2+…+knvn = 0    implies     k1 = k2 =… = kn = 0 

A linearly independent set of vectors B ={e1, e2, …, en} that span the 
whole space is called a basis of V. Any vector in V is expressed as a 
unique linear combination w = k1e1+k2e2+…+knen of the basis vectors. 

Bases are not unique, but they have, however, the same number n of 
independent vectors and n is called the dimension of V.
 



Expression of a vector in a basis
Vectors are uniquely defined entities but changing the basis we may 
change the mode of describing them. In order to avoid confusions we 
will introduce a new notation:

v, u, w  vectors in ℝn

v1, v2, …, vn components of a vector 
e1, e2, …, en basis set for ℝn

 



Basis change: effect on vectors



Linear transformations
If U and V are vector spaces over a field F, a function h : U → V is a
homomorphism if it satisfies the following conditions:

        h(a+b) = h(a) + h(b)
        h(ka) = k·h(a)

A homomorphism between vector spaces is called a linear transformation, 
When V = U the map is called a linear operator or an endomorphism of V. 
An endomorphism that is also an isomorphism, is called an automorphism.  

The set of automorphisms of a vector space Aut(V) with the sequential 
composition as operation has the structure of a group called the general
linear group of V, written as GL(V).



Effect of a linear transformation
A linear transformation h: V → V  
sends each vector v into another
vector v’ = h(v).

The effect of the transformation on
the components of v is described
by a square matrix: v’ = T v

Counterclockwise rotation
by 𝜽 around the origin



Transformation matrices
The transformation matrix is fully determined by looking at the 
effect of the transformation on a set of basis vectors



Matrix representations of groups
The effect of a linear transformation is completely determined by its effect 
upon n independent basis vectors:

This is a one-to-one association between the mapping a matrix (the actual 
matrix depends on the basis choice). For a whole set of mappings {A, B, … } 
each one will have its corresponding matrix {A, B, … }.

A matrix representation of a finite group G on a vector space V over a field 
F is a group homomorphism from G to GLn(F), the group of n x n invertible 
matrices with entries in F.



Decomposition of vector spaces
Let T and U be subspaces of V. The sum of T and U, denoted by T+U, 
is the set of all vectors t+u where t ∈T and u ∈U
 

If V = T + U and T ∩ U = {0}, then V is said to be the direct sum of 
T and U, written as T⊕U

V = T⊕U  iff every vector v ∈V can be written, 
in a unique manner, as a sum v = t + u where 
t ∈T and u ∈U
 
Example:

XY = sp {(1,0,0), (0,1,0)}  and Z = sp {(0,0,1)}
                     ℝ3 = XY ⊕ Z



Invariant subspaces
A subspace W of a vector space V is said to be invariant under a linear 
transformation h : V → V  if h(w) is contained in W for any w ∈W

Example
Consider a Cn rotation around the z axis in ℝ3

Any vector (0,0,z) will be carried to (0,0,z) by the
rotation, while any vector (x,y,0) will be carried to 
a (x’,y’,0) vector

In this case, W1 = { (0,0,z) } and W2 = { (x,y,0) } are
invariant subspaces of ℝ3 under the Cn rotation  



Constructing representations for C3v in ℝ2

Let us consider a 2-D equilateral triangle and the transformations that 
bring it to self-coincidence 



Transformation matrices
Now we look at the effect of these operations on a basis for ℝ2:  



A 2-dimensional representation for C3v

Working out all the matrices associated with the symmetry operations 
In the group we find:



Effect of basis changes on representations 
Let’s take a look at the representation that we obtain for another basis 
of ℝ2: 



2-D representations for C3v
Using different basis sets for ℝ2 we arrive to two different 2-dim matrix 
representations for C3v:

Both sets form a group with matrix multiplication that represents the 
C3v symmetry group in ℝ2. Are they really different representations?
Or do they just contain the same information in a different format?



Relation between representations
Since we have built two 2D representations for C3v  just by changing the 
basis, they must be obviously related. For the basis change we have:



Similarity transformations
If a matrix Q exists such that:

                                                    Q-1AQ = B

then A and B are said to be related by a similarity transformation and:

                            det(A) = det(B)
                          λ’s of A =  λ’s of B 
                              Tr(A) = Tr(B)

If for a set A’ = Q-1AQ , B’ = Q-1BQ, C’ = Q-1CQ … then any relation 
between A, B, C, … is also satisfied between A’, B’, C’, … 



Equivalent representations
Two matrix representations that are related by a similarity transformation
are said to be equivalent



Using determinants as matrix representations
Since 

                                          det(AB) = det(A) det(B)  

the determinants of a matrix representation {A, B, … } of a finite group 
satisfy also the multiplication table of the group they form a 1-D 
representation (1x1 matrices) of the group:          



The trivial representation
Since 1 x 1 = 1, all groups have a trivial 1-D representation, called the 
totally symmetric representation, that associates 1 to each element in 
the group: 

We can build n-D versions of the trivial representation using the n×n 
identity matrix, but all contain the same information: 



Representations and the FHT
C3v has 3 normal subgroups and the FHT states that there are only three
possible different homomorphic images of C3v

Since representations are group homomorphisms, there are only 3 really 
different representations for C3v



Matrix representations for C3v
The three fundamentally different representations of C3v are:



The 𝛤3N representation for a molecule
Considering a molecular structure with N atoms we can build a 
3N-dimensional vector space V whose basis are the elemental 
ex, ey, ez cartesian displacements for each of the atoms. 
Warning: V is not the same as ℝ3N 

e1
e2

e3

e7e8

e9

e4
e5

e6

The action of the symmetry
group G on V is restricted to
linear combinations of 
displacements on sets of 
equivalent atoms, partitioning
V in invariant subspaces:  
  

           V = VO ⊕ VH



Building the 𝛤3N representation
To obtain the 𝛤3N representation we just need to find out the effects of
each operation in G on the basis set {e1, e2, e3, …, e3N} and build the
corresponding matrices   

In this example,
the in-plane and
the perpendicular
displacements 
form two invariant 
subspaces that 
partition V:

     V = V‖ ⊕ V⊥



Building the 𝛤3N representation
With the relations in the previous slide we can construct the matrix 
associated with C32 in our 9-D representation

Since operations in G 
interchange atoms the 
matrices in the 𝛤3N 

representation are always 
built from 3x3 blocks.

In most cases we will only 
need the elements on the 
diagonal, the trace of the,
matrix) so that we need only
to look for each operation
for atoms that do not change 
their position.



Obtaining representations from function spaces
Let us consider a C atom at the origin in a cartesian coordinate system
and a Cn rotation around the z axis. The valence 2s and 2p orbitals form
a 4-dimensional vector space from which we can obtain a representation.   

By inspection we can see that
the rotation leaves the s and pz 
orbitals unchanged and convert
the px and py ones into apx+bpy

linear combinations

1 0 0 0
0 a b 0
0 c d 0
0 0 0 1

Since we have a  partition V = Vs ⊕ Vx,y ⊕ Vz the
matrix for Cn(z) will have a 1 + 2x2 + 1 block form 



The effect of the operation on ℝ3 induces a new (transformed) function: 

The value of the new function at a given point in old coordinates must be 
the same as that of the old function at the same point in new coordinates

Effect of symmetry operations on functions
The symmetry operation acts on the full ℝ3 space, sending each point 
(x,y,z) to a new point (x’,y’,z’)

!!R̂ (x,y,z)→ (x ',y ',z') ÔRϕ1(x,y,z)=ϕ '1(x,y,z)

!!ϕ '1(x,y,z)=ϕ1(x ',y ',z')



Effect of a Cn(z) rotation on  px

The mathematical expression for the p orbitals is

!!

ϕ '1(x,y,z)= (xcosθ +ysinθ ) f (r)= xcosθ f (r)+ysinθ f (r)=
= cosθ ⋅ϕ1(x,y,z)+sinθ ⋅ϕ2(x,y,z)

!!ϕ '1(x,y,z)=ϕ1(x ',y ',z')
Using the relation

we arrive at



Cn(z) matrix representation 
Repeating the procedure for the other two p-type orbitals we get: 

That can be expressed as a matrix equation: 



Matrix representation for C3v using V = {px, py, pz} 

Applying the same technique for the other operations in C3v we arrive 
to the following 3-dim representation:

which is the same as the representation obtained from V = ℝ3 using the 
standard orthonormal {ex, ey, ez} basis


